当前位置:买大量老域名做群站吗-玉米号探索中国碳卫星究竟有多牛?干货全在这儿了
中国碳卫星究竟有多牛?干货全在这儿了
2022-05-24

文章来源:科学大院微信公众号

在《我国首颗碳卫星即将发射,到太空监测“碳”排放!》一文中,我们讲到为了应对全球气候变化、全面监测全球CO2浓度分布情况,我国即将发射首颗CO2观测科学实验卫星TANSAT,这是继日本GOSAT卫星和美国OCO-2卫星之后的第三颗全球“嗅碳”卫星。

那么碳卫星到底身怀什么样的绝技,才能够让“碳排放”无处遁形?今天让我们一探究竟。

中国碳卫星身负光荣使命

在节能减排刻不容缓的形势下,为了达到《巴厘路线图》的“三可”量化减排目标(可测量、可报告、可核查)和相应的计量方法,各国政府都迫切希望科学家们能拿出切实可行的测量方法和技术,为全球碳循环的研究提供可信的数据支持。

要在全球和区域尺度获取碳循环研究所需的CO2通量信息,星载CO2探测技术成为“嗅碳”的首要突破点,然而极大的技术难度使目前全球仅有两颗卫星在轨工作。一颗是日本于2009年成功发射的温室气体观测卫星“呼吸”号(GOSAT)卫星,另一颗是美国2014年发射的OCO-2卫星。

2015年12月22日,NASA公布的首张全球CO2分布图,其中中低纬度部分地区的大气CO2浓度突破了400ppm

2009年,国家遥感中心组织专家组开始中国碳卫星的前期战略研究工作;2011年在863计划的支持下“全球二氧化碳监测科学实验卫星与应用示范”重大项目(中国碳卫星)正式立项。项目目标为研制并发射一颗“以高光谱CO2探测仪、多谱段云与气溶胶探测仪为主要载荷的高空间分辨率和高光谱分辨率全球二氧化碳监测科学试验卫星”,建立高光谱卫星地面数据处理与验证系统,形成对全球、中国及其它重点地区大气CO2浓度监测能力,监测精度达到1-4ppm。

无所遁形碳卫星如何监测全球CO2浓度

碳卫星实现大气温室气体探测是基于大气吸收池原理,CO2、O2等气体在近红外至短波红外波段有较多的气体吸收,形成特征大气吸收光谱,对吸收光谱的强弱进行严格定量测量,综合气压、温度等辅助信息并排除大气悬浮微粒等干扰因素,应用反演算法即可计算出卫星在观测路径上CO2的柱浓度。

温室气体大气吸收池原理示意图

通过对全球柱浓度的序列分析,并借助数据同化系统的一系列模型计算,可推演出全球CO2的通量变化(单位时间通过单位面积的CO2总量),这正是碳循环研究的核心数据基础。

碳循环示意图

要获取高精度的大气吸收光谱,就要依靠碳卫星的主载荷——高光谱与高空间分辨率CO2探测仪。CO2探测仪采用大面积衍射光栅对吸收光谱进行细分,能够探测2.06μm、1.6μm、0.76μm 三个大气吸收光谱通道,最高分辨率达到0.04nm,如此高的分辨率在国内光谱仪器的研制上尚属首次。

一个好汉三个帮,在主载荷之外,碳卫星的另一台载荷——多谱段云与气溶胶探测仪,可以用来测量云、大气颗粒物等辅助信息,为精确反演CO2浓度剔除干扰因素。

除了这些载荷发挥作用外,碳卫星最终要实现全球观测,还需要卫星平台实现灵活的观测模式。

CO2探测仪与卫星平台配合,通过主平面天底和耀斑两种主要观测模式,才能对全球陆地和海面路径上CO2的吸收光谱进行精确测量。为保证在轨获取光谱数据的精度,载荷需要在轨进行对日、对月定标,这也需要卫星平台频繁调整姿态、翩翩起舞。

中国碳卫星绝对是地球之上的灵魂舞者。

当然,仅有卫星是远远不能完成使命的,若要实现最终任务目标,需要多个大系统协调配合。在科技部、中国科学院的共同组织下,碳卫星按照航天工程模式,组成了卫星、运载、发射场、测控、应用五大系统。

碳卫星发射运行后,科学数据将依托风云系列地面接收站资源完成数据下传。这些数据并不是直接可用的CO2浓度分布,需要经过大气物理学家进行高精度的全球CO2分布反演计算,最终才能成为全球CO2观测数据产品并共享发布。

碳卫星数据产品生成与发布路径

钢铁怎样炼成CO2探测仪关键技术与突破

CO2探测仪采用三通道光栅光谱仪的方案,选用一块Si-CCD探测器和两块MCT制冷探测器接收3个波段的高光谱分辨率光谱辐射信号,由指向反射镜、望远镜、分束器、三个光栅光谱仪和星上定标组成,0.76μm、1.61μm和2.06μm共3个谱段,分别对大气中的O2和CO2痕量气体进行观测,提供大气温室气体的精细光谱测量结果。

CO2探测仪核心的技术指标和难点就是要同时实现高光谱分辨率和高辐射分辨率,这就如同检查人的指纹,普通仪器只看得到纹理,而CO2探测仪可以把指纹放大一百倍,精细的测量每条指纹的宽度和深度。

为实现核心指标,CO2探测仪突破了一系列核心关键技术。

CO2探测仪通过一块指向反射镜对外部光线进行收集,这块指向镜在设计时被巧妙的设计成“一镜双用”:一面镜面,用于在观测时折射光线;一面漫反射面,在定标时对准太阳,形成漫反射光来定标仪器精度。

巧妙设计的背后是加工制造难度的极大增加,一方面要保证镜面和漫反射面的高精度,另一方面要实现高度轻量化和高可靠性,研究人员经过反复的工艺摸索和大量的空间可靠性试验,最终才完全攻克这项关键技术难题。

科研人员在对指向镜进行精度测试

CO2探测仪使用的核心分光元件是大面积全息光栅,这种光栅需要极高的衍射效率和面型精度,同时要能够适应苛刻的太空环境。

为突破这项关键技术,科研人员从最基础的、制造全息光栅所需的高精度曝光系统研究出发,一点点攻克技术难点,最终在SiC基底上制造出高精度衍射光栅,并在航空较飞试验中进行了验证。

大面积全息衍射光栅

对于碳卫星上的CO2探测仪来说,还有一项与其他很多星载光学载荷不同,那就是它在轨工作时要保持在-5℃的温度水平,这是为了提高两个红外通道的信噪比、保证光谱探测精度。

这一简单的条件变化,需要科研人员进行所有的组件、整机装调工作时都必须在-5℃条件下,于是,在载荷初样、正样研制最紧张的阶段,研究人员连续数月在低温室里工作,经常是户外30℃以上的高温,而低温室内却要穿着厚厚的羽绒服、冻着手坚持装调。

定标技术是光谱仪器的最终实现精度的关键技术,为保证最终的光谱数据的精准,必须在实验室和在轨工作时对仪器的光谱性能和辐射性能进行精准标定。

CO2探测仪和云与气溶胶探测仪采用了国际最先进的定标技术。为保证实验室定标数据有效性,CO2探测仪必须在真空罐内模拟在轨实际工作状态进行定标,而这一真空定标系统是为CO2探测仪量身特制的。

科研人员还利用可调谐激光器和波长及搭建自动化定标系统,大幅提高了实验室定标的效率,使仪器的定标周期较OCO-2大幅缩短。

而提到在轨定标技术,两台仪器均采用的是多种定标模式交叉比对定标,而且能够实现在轨对日定标,云与气溶胶探测仪还能够进行在轨对月定标,这使得在太空工作状态下,仪器也能有一个稳定的决定定标基准,对于保证仪器最终的数据精度极为关键。

一个好汉三个帮“配角”也不简单

多谱段云与气溶胶探测仪虽然不是“主角”,但千万别小看它,它可能会给我们带来很多意想不到的收获。

在碳卫星立项论证时,云与气溶胶探测仪只规划了0.38μm、0.67μm、0.87μm、1.64μm四个光谱通道,但随着地面应用系统的不断论证,希望仪器能够增加1.375μm探测通道,并在0.67μm和1.64μm波段实现0°、60°、120°三个方向的偏振测量功能。

为了获取更加丰富的科学数据,载荷研制单位克服困能,重新对仪器进行了设计,按照应用系统的需求增加了相应的探测通道。

增加探测通道后,利用偏振信号对气溶胶敏感而对地表不敏感的特点,可以提取气溶胶光学厚度,然后利用提取的气溶胶信息和标量信号对地表敏感的特点,经过大气订正,得到地表反射率,从而实现对气溶胶和地表反射率的同时反演。

这样不仅可以获取到全球尺度气溶胶数据,还可以帮助气象学家提高天气预报的准确性,并为研究PM2.5等大气污染成因提供重要数据支撑。

Tags:中国 卫星 究竟 究竟有 竟有 干货 在这 在这儿 这儿